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AN ANALYTICAL SOLUTION OF THE PROBLEM OF CONVECTIVE DIFFUSION IN THE 
NEIGHBOURHOOD OF A DISCONTINUITY OF THE CATALYTIC PROPERTIES OF A SURFACE* 

I.G, BRYKINA 

The problem of convective diffusion when a binary mixture flaws round a 
plate when there is a line of discontinuity of the catalytic properties 
on the plate is considered. The effect of longitudinal diffusion is 
taken into account. The surface is assumed to be non-catalytic up to the 
discontinuity but possesses a finite catalytic activity after the discon- 
tinuity. At fow values of the coefficient of catalytic activity, an 
analytic solution of the problem is obtained by the application of a 
Fourier transform. The asymptotic forms of the solution are found in the 
form of simple formulae both near the remote from the point of disoonti- 
nuity of the boundary conditions and both upstream and downstream. A 
comparison is made with the solutions obtained in the boundary layer 
approximation and by a numerical method il./. 

The problem of convective diffusion (or thermal conductivity) in the 
case of a transition from a not-catalytic surface onto an ideally cata1y.ti.c 
surface has been solved /2, 3/ by the Wiener-Hopf method. 

1. The stationary flaw of a two component incompressible liquid ox gas with constant dif- 
fusion properties and a linear velocity profile (u'= Y,Y$', U* = 0) in the 2' directionaround 
an infinite plate y'=8, on the surface of which a heterogeneous first-order reaction occurs. 
is considered. The surface is assumed to be non-catalytic in the half-plane #* = 8, s'<O 
and to possess a finite catalytic activity in the half plane y'=O, x’>O. 

The diffusion equation (which is idlentical in form to the heat conduction equation) and 
the boundary conditions in this case have the form 

Here k' is the rate constant for the heterogeneous r~~~ination~ntb~ surface, and the 
dimensionless variables .r ana 9 are related to the dimensional variables in the following 
manner: 

(0 is the coefficient of diffusion and c is the concentration). 
Let us consider the case when k<l. A solution of the problem can then be sought in 

the form 
c = cg (z - kf + . ..) * v.31 

For the function f(s,P) we obtain en equation , which is identical to (1.11, while the 
boundary conditions take the form 
l Prikl.Mabm.Mekhan.,52,2,244-251,1988 
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X-P-c-2, vy and y--,00, Vx:f+O 

y=o, s<o: +o; y=o,x>o: -+=-I 

(1.4) 

The problem is elliptic and the system of boundary conditions (1.4) must therefore be 
augmented with the conditions when I+ 00, Vy. 

We will seek a bounded solution of the problem f -+ 0 as X+ m, Vy, In doing this, 
instead of the last boundary condition of (1.4), let us consider the condition 

y = 0, x > 0: Oflay = -e+, 6 > 0 (1.5) 

A certain positive parameter 6 is introduced which may be made as small as desired (the 
introduction of this parameter will allow us to avoid the singularity which arises in passing 
around the branching point in finding the function G, (a)). After finding the solution in 
the neighbourhood of the discontinuity, we allow 6 to tend to Xeroandfind the solution which 
corresponds to the last boundary condition of (1.4). 

The mathematical formulation of the problem is therefore as follows: it is required that 
a function f(s, y) be found which satisfies the equation and the boundary conditions: 

(1.6) 

(2 + yy. --z co: f - 0 

y=o, z<o: G=o; y=o, z>O: -$-=-e-bx, S>o 

(1.7) 

Let us make one further assumption concerning the behaviour of the solution as X--*--00: 

I f I < Aeax (1.8) 
for a certain a>O. This assumption will subsequently be checked after the solution of 
the problem has been found. 

2. Let us introduce the Fourier transform with respect to 

@(a,~)=& j f(z,y)elaxdx, a=cr+it 
-cm 

It defines the function o(a,y) which is analytic with respect to the variable OE in the 
strip O<Ima <a by virtue of condition (1.8) and the boundedness of f as X-'+-' and, 
moreover, the inverse transform has the form 

5 

(2.1) 

@(a,y)e-'wda, O<r'<a (2.2) 

By making the substitution 

s = e-*/S (&)%(y + h) (2.3) 

for the function o(a,S) from (1.6), we obtain Airy's equation 

d4DlGY -SD = 0 (2.4) 
It is necessary to choose a solution of this equation which decreases (ID-O) as y-+00. 

This solution is expressed in terms of the Airy functions Ai /4/ (we ass& that a% = 
a%. on the real positive axis) 

@((a,y)=A(a)Ai(s), Ai(r)=$~m(ts+$-)dt 

and -n/3 < arg 8 < n/3 (in this interval, the Airy function decays exponentially as s-00). 

It follows from this that 

--n/2 < arg a < 3nl2 

this is, the a plane must have a cut along the negative imaginary axis. 
In order to determine A (a), let us differentiate (2.5) with respect to y and write the 

resulting relationship when 6, = 0 

~(or,O)= A(a) Ai’(z)e-‘“au’h, z = s I,,=e'nlsa'l* (2.6) 

By taking account of the boundary conditions (1.7), we obtain an expression for the left- 
hand side of the first equality in (2.61, after which, we find 
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A (a) = e-/e [r/z (ia - 8)a'lsAi' @)I-’ (3.7) 

By substituting this expression into (2.5), we determine (D(a,Y) and can then find 

f (x9 Y) from (2.2). 
Let us split the function 0,a.y) up into two functions: 

Q, (a, Y) = @+ (a, Y) + @_ (a, Y) 

We shall now determine the functions @+ (a, 0) and @_(a, 0) by means of the Wiener- 
Hopf method which makes it possible to find the asymptotic forms of the behaviour of the 

solution as x++ 0 and z-t+ co. Let us write (2.8) when y = 0 

@+ (a, 0) + @_ (a, 0) = G (a) 

2=/*&f (a) 

G la)= )/%?a (a + ih) ’ 
K C/d’) ‘Is 

g (‘) = K,,, (s/s”*) 

(here the fact that the Airy function can be expressed in terms of modified Bessel functions 
of the second kind with an order of V1) /4/ has been taken account of: Ai (z) = n-l (2/3)1f~K1,,(~/&) 
as well as the rule for the differentiation of Bessel functions /5/). 

It is required that we should determine the functions Q+(a,O) and @_(a, 0) from the 
functional Eq.(2.10). These functions are analytic in the Ima>O and Ima<a half 
planes respectively (by virtue of (1.7) and (1.8)) and tend to zero as la I+ 00 in both 
regions where they are analytic. 

Suppose it is possible to represent the function G(a) in the form 

G(a) = G+(a) + G_ (a) (2.12) 

where the functions G+(a) and G_(a) are analytic in the half planes Ima>O and Ima< 
a respectively. Then, by applying the reasoning of the Wiener-Hopf method /6/, we obtain that 

@+ (a, 0) = G+ (a), CD (a, 0) = G_ (a) (2.13) 

(In order that (2.13) should be satisfied, it is necessary that G_(a)+0 
laI+w. 

and G+(a)+0 as 
This will be proved later after the actual form of G, and G_ has been found). 

So, in order to determine the functions CD+ and @_, it is necessary to find a represen- 
tation of G(a) in the form of (2.12). 

3. Let us determine the functions G+ and G_. The functions K~f,aand KS/, in the a plane 
have an infinite number of simple zeros on the positive imaginary axis and a branch point 
a=0 (the a plane is cut along the negative imaginary axis). Let us now choose the 
parameter a in (1.9) to be smaller in magnitude than the distance from the originofcoordinates 
up to the first zero of both the function Kg/, and the function K*/.. The function G(a) will 
then by analytic in the domain O<Ima<a (G(a) has an infinite number of simple poles on 
the positive imaginary axis, a simple pole a = -i6 on the negative imaginary axis and a 
branch point a = 0). Furthermore, IG(a)I=O(laI-'), lal+ co. Consequently /6/,the function 

G(a) can be represented in the form of a sum 

G (4 = G+ (a) + G_ (a) 
OL +ic’ m+id 

G+(a)=& s ZdL G_(a)=-&_$+idf-&dS 
-ca+*c' 

O<c'<Ima<d<a 

(3.1) 

where the functions G+(a) and G_(a) are analytic in the upper (Ima>O) and lower (Im 
&<a) half planes respectively. 

Let us now consider the function G+ (a) and deform the contour of integration in the 
integral (3.1) for G+(a) such that it passes along two straight lines: L1 (arg a = 5n/4) and 
L, (arga = --n/4) (Fig.1). We then close the path of integration with two arcs of large radius 
R: Cl (a = Reie, n < 0 < 5n/4) and C,(a = Re@, --n/4 < 8 < 0) and an arc of small radius p in 
the neighbourhood of C, (circumventing the branch point). It can be shown that 



194 

Fig.1 

The integrand is analytic within the closed contour 
bounded by C,, L,, Co, L, and C8 and the initial line of 
integration and, consequently 

Let us make the following change of variables 

on L,: < = re-*J’, g (z) = g (f/a) = Ky, (a18r’)lKs,a (V,r’) 
on L,: 6 = reim/*, g (2) = -g (f's) 

After transformations, the integral (3.2) can be reduced to the form 

G+W=QW 
&!@)[2&+f/Zr(6- t)ldr 

S (t, r) R (r) 

(3.2) 

(3.3) 

The function G_(a) is found in a similar way. By taking account of the fact that, on 
passing from integration along the line Im 6 = d to integration along the lines L, and L,, 
the integrand has a first-order pole in the domain bounded by the contour C,, L,, Cp,La,Ca and 
the straight line Im 6 = d, we obtain 

G_ (a] = G(a) -Q(a) (3.4) 

4. Let us find the asymptotic form of the solution when 15 I>i, s>O. We will obtain 
an expression for G+(a) when [a [((I. Taking account of the expansion for the function g(f”) 
for small r, we shall represent g in the following manner: 

where I'(z) is the gamma 
Substituting (4.1) 

g (f/s) = - (1 - pr’l* + 0 (P/a)) = 
P 

$(I-ppi’/.)+N,(r)=$+N,(r), p=3’~~~ 

(4.1) 

function. 
into (3.3), we can represent G+(a) in the form 

(2npG+ (a) = I, + I, + 1, + 14 

II=+-: 
26 (1 - pr"') 

o r% (t,r) R (r) 
a?, I,= 

m 2t6N1 (r) dr 
s s (t, 4 R (~9 
0 

dr, z4 = m 1/” (8 - f) rNs W 
s s (h r) R w 

dr 

0 

and make an estimation of the terms. 
Jf/ztFa + (t*r* + 1/ZfP)lS, we get 

By taking account of the representation l/S(t,r) = r* - 

Let us write the final expression as 

G+(u)=..&+=&_~+- tlnf +0(t) 
pa*fl2n &nf/2ji (4.2) 
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For the function f(z)=! (z,O)(z>O), by using Theorem 4l.lfrom/7/, we get 

In doing this, the concentration on the surface is determined using formula (1.3). 

5. Let us find the asymptotic form of the solution close to the point of discontinuity, 
that is, the solution when lz 1<1, ~20. We initially obtain an expression for G+(U) when 

lcl>i* 
Let us transform integral (3.3) in the same way as was done in /8/, taking into account 

the expansion 

g (F/a) = 1 - 1/,r-a + 0 (r-l), r > 1 

(5.1) 

f/Z(6-t) l 
ts s T (r) P (r) dr + 

0 

Vz (6 - 0 OD g P) - 1 T (r, t) dr 

-R(r) P s 2 (9; t) _ r - VS$: ,’ (t, r) dr s r 
1 1 

g (r”? P (4 = R t J, = P(r)r”dr 
s 
0 

The fourth, seventh and eighth terms are of the order of f' while the fifth and sixth 
terms can be represented in the form of a sum of terms of the order of f' and t-’ respect- 
ively. The last term can be reduced to the form 

We shall obtain the final expression for G+(a) when la IsI, by discarding the 
terms O(P) in (5.1) 

G+(a)=- 
(2$. [ 

& + b, ‘9 + (& + b, ‘-1 + 0( [al*) 

b1 = 26J_, - l/g J,, b,=2, b8=iP(r)rdr+2rwdr- 

1/26J.+n-2arctgIli-_b-IB(L--1/26+~~), b,=-48 

(5.2) 

Knowing the Fourier transformation of G+(a) from f(r)(z> 0) when Ja 151, we find 
the original f(r) when s< 1, having made use of an analogue of Watson's lemma in the case 
when the function has a logarithmic singularity /4/: 

f(s)=~-_~l"z+O(seln2), z>o 

Let us pass to the limit as 8+0 in this expression, that is, we shall find the 
solution corresnondins to the boundary conditions (1.4). 

By taking 
b, in the form 
Sect.4. After 

get 

account of expansion (4.1) of the function g (f’s) for small *, we represent 
of a sum of several terms in a similar way to the representation of G+(a) in 
evaluating the corresponding integrals and passing to the limit as 6+0, we 

f(2) = a, - n-'xln 5, 12 I < 1, 2> 0 (5.4) 

1 
aI=- 

OD r’l*/p - g (r'") s flnO rp drz 0.8822 

\ 
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The asymptotic form of the solution when I< 0, 15 ]<I are determined in a similar way 
and corresponds to (5.4) when In z is replaced by ln(-x), 

The concentration on the surface is determined using the formula 

c/c, = 1 -k (0.8822 - rc-12 In 1 z I), 1 x 1 < 1, k < 1 (5.6) 

Let us now compare this with the solution obtained from the theory of a diffusing bound- 
ary layer. In the boundary-layer approximation, ignoring longitudinal diffusion, we shall 
write the initial problem in the form (z>O) 

ai av 
“,,=-@; y=o: +-1; y-+00: f-0 

This problem has the solution 

It is seen that both the true value (taking longitudinal diffusion into account) of the 
required function on the surface when I= O:f~0.8822 differs from the value given by boundary- 
layer theory, f=p, and the true character of its behaviour when z-+0: 8l/az-IInzI differs 
from the dependence specified by the boundary-layer solution: atI&-z-*1*. 

A comparison of the value of the concentration on the surface when z= 0 with the 
solution obtained by a numerical method /l/ shows that the difference between the results 
does not exceed 5%. 

6. It now remains to verify assumption (1.8) made in Sect.1 concerning the nature of 
the decay of the solution when z---00. It is sufficient to carry out this verification when 
v = 0. 

The Fourier transform from f(z) when z<O can be writtten in the form 

idm 
1 

G-(e) = _(2n)'/' *d_-ooG*(W6 T (6.1) 

G* (6) = 
R,lS ('/ST e s in/a) 

I, (5 + is) (5 --a) K,,,(*/sE I in/a) ’ E 
Ima<d<a 

Let us now augment the contour of integration in the upper half plane with a semicircular 
arc C, of large radius R: fc- idi = R. It can be shown that 

s G*dc-0 asR-* when R-m 

CR 

The function G*$) is meromorphic in the half plane Im 6> d and therefore 

id+- m 

S G* (5) d6 = 2ni ,Tj FM tG* (~6~11 W) 
id--m L=l 

Bere, Ek are the simple poles of the function 
(a/~&ti’*) so that the residues of the function G* 

G*(E) or the zeros of the function K.,, 
are finite at these points. 

From a relationship which follows from the rules for the differentiation of Bessel func- 
tions 

it follows that 

On the basis of (6.1)-(6.3), we get 

G_ (a) = 

(6.3) 

where --11k are the zeros of the Bessel function K,,,(~),#k>O are real numbers and, moreover, 

t1<t*<:*<.** - 
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When z<O, the required function f(z) is determined in the following manner: 

C_(a)e-‘CUddcc, O<r’<o 

The function G_(a) satisfies the conditions of Jordan's lemma in the upper half plane 
and has an infinite number of simple poles on the positive imaginary axis at the points c+=~Q. 
Then, 

whence, as z-+--m 

1 f I< Ae(“-e)x, A > & 

where e is an arbitrary small finite positive quantity. 
So, it is possible to put a in Eq.(1.8) equal to any positive number which is strictly 

less than rl (8, z 1.014). 
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